Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Med Virol ; 95(5): e28785, 2023 05.
Article in English | MEDLINE | ID: covidwho-2326683
2.
Biomedicines ; 10(9)2022 Sep 12.
Article in English | MEDLINE | ID: covidwho-2032842

ABSTRACT

An increasing body of evidence in the literature is reporting the feasibility of using medical ozone as a possible alternative and adjuvant treatment for COVID-19 patients, significantly reducing hospitalization time, pro-inflammatory indicators, and coagulation markers and improving blood oxygenation parameters. In addition to the well-described ability of medical ozone in counteracting oxidative stress through the upregulation of the main anti-oxidant and scavenging enzymes, oxygen-ozone (O2-O3) therapy has also proved effective in reducing chronic inflammation and the occurrence of immune thrombosis, two key players involved in COVID-19 exacerbation and severity. As chronic inflammation and oxidative stress are also reported to be among the main drivers of the long sequelae of SARS-CoV2 infection, a rising number of studies is investigating the potential of O2-O3 therapy to reduce and/or prevent the wide range of post-COVID (or PASC)-related disorders. This narrative review aims to describe the molecular mechanisms through which medical ozone acts, to summarize the clinical evidence on the use of O2-O3 therapy as an alternative and adjuvant COVID-19 treatment, and to discuss the emerging potential of this approach in the context of PASC symptoms, thus offering new insights into effective and safe nonantiviral therapies for the fighting of this devastating pandemic.

3.
Int Immunopharmacol ; 96: 107777, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1225264

ABSTRACT

An increasing amount of reports in the literature is showing that medical ozone (O3) is used, with encouraging results, in treating COVID-19 patients, optimizing pain and symptoms relief, respiratory parameters, inflammatory and coagulation markers and the overall health status, so reducing significantly how much time patients underwent hospitalization and intensive care. To date, aside from mechanisms taking into account the ability of O3 to activate a rapid oxidative stress response, by up-regulating antioxidant and scavenging enzymes, no sound hypothesis was addressed to attempt a synopsis of how O3 should act on COVID-19. The knowledge on how O3 works on inflammation and thrombosis mechanisms is of the utmost importance to make physicians endowed with new guns against SARS-CoV2 pandemic. This review tries to address this issue, so to expand the debate in the scientific community.


Subject(s)
COVID-19 Drug Treatment , Oxidants, Photochemical/pharmacology , Ozone/pharmacology , SARS-CoV-2/drug effects , Humans , Oxidative Stress/drug effects
7.
Int Immunopharmacol ; 88: 106879, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-919641

ABSTRACT

OBJECTIVE: This study evaluated the potential efficacy of a novel approach to treat COVID-19 patients, using an oxygen-ozone (O2-O3) mixture, via a process called Oxygen-Ozone- Immunoceutical Therapy. The methodology met the criteria of a novel, promising approach to treat successfully elderly COVID-19 patients, particularly when hospitalized in intensive care units (ICUs) Experimental design: We investigated the therapeutic effect of 4 cycles of O2-O3 in 50 hospitalized COVID-19 subjects suffering from acute respiratory disease syndrome (ARDS), aged more than 60 years, all males and undergoing non invasive mechanical ventilation in ICUs. RESULTS: Following O2-O3 treatment a significant improvement in inflammation and oxygenation indexes occurred rapidly and within the first 9 days after the treatment, despite the expected 14-20 days. A significant reduction of inflammatory and thromboembolic markers (CRP, IL-6, D-dimer) was observed. Furthermore, amelioration in the major respiratory indexes, such as respiratory and gas exchange markers (SatO2%, PaO2/FiO2 ratio), was reported. CONCLUSION: Our results show that O2-O3 treatment would be a promising therapy for COVID-19 patients. It leads patients to a fast recovery from ARDS via the improvement of major respiratory indexes and blood gas parameters, following a relatively short time of dispensed forced ventilation (about one to two weeks). This study may encourage the scientific community to further investigate and evaluate the proposed method for the treatment of COVID-19 patients.


Subject(s)
Coronavirus Infections/therapy , Immunotherapy/methods , Oxygen/therapeutic use , Ozone/therapeutic use , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/therapy , Aged , Betacoronavirus , Blood Gas Analysis , COVID-19 , Coronavirus Infections/immunology , Humans , Immunotherapy/instrumentation , Infusions, Intravenous , Intensive Care Units , Oxygen/administration & dosage , Ozone/administration & dosage , Pandemics , Pneumonia, Viral/immunology , Respiration, Artificial , Respiratory Distress Syndrome/immunology , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL